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Abstract—Today many of the high performance embedded
processors already contain multiple processor cores and we see
heterogeneous manycore architectures being proposed. Therefore
it is very desirable to have a fast way to explore various
heterogeneous architectures through the use of an architectural
design space exploration tool, giving the designer the option to
explore design alternatives before the physical implementation.

In this paper, we have extended Heracles, a design space
exploration tool for (homogeneous) manycore architectures, to
incorporate different types of processing cores, and thus allow
us to model heterogeneity. Our tool, called the Heterogeneous
Heracles System (HHS), can besides the already supported MIPS
core also include OpenRISC cores. The new tool retains the
possibility available in Heracles to perform register transfer level
(RTL) simulations of each explored architecture in Verilog as well
as synthesizing it to field-programmable gate arrays (FPGAs).
To facilitate the exploration of heterogeneous architectures, we
have also extended the graphical user interface (GUI) to support
heterogeneity. This GUI provides options to configure the types
of core, core settings, memory system and network topology.

Some initial results on FPGA utilization are presented from
synthesizing both homogeneous and heterogeneous manycore
architectures, as well as some benchmark results from both
simulated and synthesized architectures.

I. INTRODUCTION

The latest step in processor architecture is the introduction

of heterogeneity in manycore System on Chip (SoC). An

asymmetric (heterogeneous) SoC consists of large cores that

handle complex and heavy computations in combination with

a large number of small cores that execute less complex

computations and use less energy. Heterogeneity facilitates an

energy efficient architecture, used in portable devices, or a high

performance architecture which handles complex and heavy

calculations.

Development of a System on Chip with multiple and het-

erogeneous cores need a huge design space to be explored,

verified, and tested. With a design space exploration tool, the

architecture can be modified according to the requirements of

specific application without going through the whole design

cycle, which reduces the development cost drastically.

Now the design space exploration can be performed at

different levels. The two most common approaches are based

on either performing software simulation using machine learn-

ing techniques to determine the design space or to carry

out register-transfer level (RTL) simulation to achieve cycle-

accurate execution results. The software simulation suffers

from the lack of accuracy, whereas the RTL simulation ap-

proach has the disadvantage of increased simulation time.

However, the increased simulation time could be mitigated

by performing hardware emulation on FPGAs from the RTL

design description.

In this paper, we introduce our Heterogeneous Heracles

System (HHS) as a tool for Architectural Design Space

Exploration (ADSE) for heterogeneous manycore systems

that generates synthesized hardware configurations for FPGA

emulation. It is an extension to the open source Heracles

Designer [1], which is a (homogeneous) manycore design

space exploration tool. The proposed system extends Heracles

to incorporate a new type of processing core, the Open-

RISC, whereas it originally only have a MIPS core available.

The newly integrated OpenRISC core supports multiplication

operation as well as a floating-point unit, which were not

suppoerted by the previously present MIPS core. A new

graphical user interface (GUI) has also been added to support

parameterization of heterogeneous systems design.

The outline of the paper is as follows. Section II pro-

vides background on the system architectural overview for

the Heracles System and the OpenRISC. A brief literature

review of the related work is presented in Section III. Section

IV elaborates on architectural system overview of the HHS.

Section V presents the evaluation tests that are perfomed

and the corresponding obtained results. Section VI provides

concluding remarks and suggestions for future work.

II. BACKGROUND

A. Heracles System

The Heracles System [2] is an open-source architectural

design space exploration (ADSE) tool, which can config-

ure system architectures into different topologies, routing

schemes, processing elements or cores and memory system

organizations. In order to support fast exploration of future

manycore architectures, the Heracles System is constructed

with a high degree of modularity. The main purpose of this

platform is architectural exploration in research and teaching

environments [1]. Based on a set of global parameters the

Heracles System generates a number of Verilog files which

implements the manycore architecture. These Verilog files can

then be simulated on ModelSim [3] or synthesized to FPGAs.

The Heracles System is provided with a GUI called Heracles
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Fig. 1. Generic Heracles System Overview.

Designer. Heracles Designer allows the user to modify the

global variables to quickly generate a new architectural design.

Heracles Designer also provides the option to download the

synthesized architecture to a Field Programmable Gate Array

(FPGA) [4]. Heracles Designer generates a file which contains

a set of global Verilog variables representing the explored

manycore architecture.

A generic overview of the overall structure of the Heracles

System is depicted in Figure 1. Each node consists of three

parts: the processing core, the memory subsystem and the

network interface. The memory subsystem consists of the

cache and the packetizer intended for communication. The

network interface is responsible for communicating between

the NoC and the CPU through the router. The Heracles System

is based on Verilog, thus can be synthesized for FPGA.

The available memory is distributed among the cores as

local memory under the control of the memory subsystem.

Every core’s local memory is mapped into its own section of

the global address space by the Heracles Designer.

B. MIPS

The processing core that is available in the Heracles System

is based on a Microprocessor without Interlocked Pipeline

Stages (MIPS) [5] implemented using a 7-stage 32-bit pipeline.

The choice of a 7-stage pipeline is due to block RAM

access time on the FPGA. The 32-bit registers are mapped

to the block RAM, which frees up some LUTs and saves the

resources of the FPGA. The MIPS CPU is fully bypassed,

meaning no branch delay slot or branch prediction table are

present. The MIPS-III instruction set architecture (ISA), used

in the Heracles System, does not include floating point [6]

operations. By using block RAMs, the instruction and data

caches are implemented. Instruction fetch and data memory

access take two cycles. To support the extended pipeline,

stall and bypass signals are modified. Instructions and data

memory accesses are issued and executed in-order. The MIPS

architecture used is a single threaded design which includes

one program counter and a set of 32 data registers. The

ALU of MIPS supports a set of operations limited to integer

addition and subtraction, logical operations, shift operations,

and comparison operations. With such a limited set of opera-

tions this processor is not able to efficiently run applications

which involve multiplication and division operations, or signal

processing application relying on floating point operations.

C. OpenRISC

The OpenRISC processor, which this paper studies, consists

of a power management unit, debug unit, tick timer, pro-

grammable interrupt controller (PIC), central processing unit

(CPU), and memory management hardware [7]. The Open-

RISC CPU is based on 5-stage pipelined RISC architecture.

By using the standardized 32-bit Wishbone bus interface,

peripheral system and a memory subsystem may be added.

The OpenRISC is intended to have a performance comparable

to an ARM10 processor. Furthermore, OpenRISC is a 32 and

64-bit processor which supports floating-point operations [8].

OpenRISC is inspired by DLX [9], which in turn is a cleaned

up (and modernized) MIPS CPU. The OpenRISC closely

resembles the MIPS CPU available in the Heracles System.

This facilitated the integration of the OpenRISC into the

Heracles System, which is the main reason for it’s selection.

The ALU of OpenRISC can perform the multiplication and

division operations besides the addition, subtraction, logical

and comparison operations. The FPU of OpenRisc is capa-

ble of performing floating point additions and subtractions

using a or1200 fpu addsub Verilog module. It also instanti-

ates a separate module, or1200 fpu mul, or1200 fpu div and

or1200 fpu cmp for floating point multiplication, division and

comparison operations. Other modules are used for integer

to float conversion and pre and post normalization required

during floating point arithmetic. The OpenRISC CPU also

has a exception unit, which raises a exception such as; Bus
Error, if there is any non-existing physical location, Alignment
exception is raised if the address is unaligned with the data

memory and Illegal instruction this exception is raised if the

CPU encounters a instruction which it cannot decode. The

exception unit is of utmost importance when integrating a

CPU with a new system, as it gives us deeper insight into

the workings of the new system and accelerates the process

of integration. The OpenRISC CPU has a optional implemen-

tation of a debug unit which assists software developers in

debugging their systems. It provides support for watch-points,

breakpoints and program-flow control registers.

The OpenRISC system architecture is still an ongoing

project.

III. RELATED WORKS

A fair amount of work has been done on architectural de-

scription, automatic code generation, design space exploration

and simulation of processors. This section provides a brief

literature review of some of the significant work performed

in the context of architectural design space exploration. For a
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detailed study of the various software based design mapping

techniques and tools, see [10].

At the micro-architectural level, Dubach et al. [11] have

proposed a machine learning based simulation approach to

train the architecture-centric model. The data gathered by off-

line learning experiments can then be used to predict the

performance and power consumption of benchmark applica-

tions with reasonable accuracy. Eyerman et al. [12], on the

other hand, used a two-phase genetic local search algorithm

to simulate out-of-order processors. The first stage applies

statistical simulation to prune the design space, which is

followed by the detailed simulation of a specific region of

interest to reduce the simulation time.

A scalable manycore processor architecture with OpenRISC

as a processing element is proposed by Chien et al. [13]. The

processing cores are connected via a mesh-based Network on

Chip (NoC) and has access to an external memory. They pro-

pose XY routing to avoid any deadlock on routing paths. The

developed framework is intended for analysis, verification and

validation of manycore processor architecture for embedded

parallel applications. While their framework is similar to the

system presented in this paper and uses the same processor,

OpenRISC, to design manycore architectures, it currently do

not include the support for exploring heterogeneity.

A design space exploration tool is presented by Lahiri et

al. [14]. This design space exploration tool is used for opti-

mization of system-level on-chip communication architectures.

The tool consists of two algorithms. The first algorithm is a

clustering algorithm for mapping the SoC communications to

network and topology. The second algorithm is an iterative

algorithm that dynamically improves the previous algorithm.

Lahiri et al. [14] contribute with an architectural view of how

communications can be mapped on SoCs, which gave a basis

towards the understanding of the communication between the

cores in the Heracles System.

For the NoC topologies design exploration, Genko et al. [15]

have created an emulation framework, which is implemented

on an FPGA. The emulation framework has been designed

as a modular NoC programmable platform. It consists of

Traffic Generators, Traffic Receptors and user defined inter-

connections between the switches of the network. Although

the framework enables a vast and extensive exploration of

NoC topologies, it only uses one hard coded processing core,

thus limiting the possibility to explore the heterogeneity at

the core level. Similarly, Öberg et al. [16] have proposed a

NoC exploration platform, which can generate 1D, 2D or 3D

Mesh and Torus topologies for multicore platforms. Their NoC

generator generates an arbitrarily large multicore platform

through an XML configuration file. Their NoC design solves

the scalability issue by complimenting the topology design,

with an on-chip interconnect system in the form of packet-

based communication. At the moment their framework do

not readily support heterogeneity among the cores. While the

Heracles System can generate 2D and 3D Mesh it currently

does not support Torus topologies.

Fig. 2. Dataflow diagram of the HHS.

IV. HETEROGENEOUS HERACLES SYSTEM

Our Heterogeneous Heracles System (HHS) integrates an

additional processor core type, OpenRISC, to the Heracles

System. The OpenRISC processor is integrated into the Hera-

cles System via an interfacer module. The HHS fully maintains

the original properties of the Heracles System, such as varying

the number of processing cores and reconfiguring both the

memory and network topologies. The data flow of the HHS

can be observed in Figure 2.

A. ADSET

Throughout the Verilog files that build the HHS there are a

set of global variables that are used in order to have a mod-

ular and reconfigurable design. Architectural Design Space

Exploration Tool (ADSET) is a graphical user interface (GUI)

created to manipulate these global variables that configure the

system generation of the HHS. Through ADSET, these global

variables are changed based on the system architecture that

is to be explored. We have created our own GUI in order to

support OpenRISC and heterogeneous architectures, while the

source code for Heracles native GUI, Heracles Designer, is

not available.

B. System Overview

Through ADSET, a module is generated which holds the

starting addresses of all the local memories for each gener-

ated CPU. This module also updates the global parameters

which configure the system based on the desired architectural

buildup. The generated module instantiates a real cores mesh

where the architectural variation is set. Every node (see Fig-

ure 2) in the HHS consists of either a MIPS or an OpenRISC

core which instantiate the memory router system module. The

memory router system is responsible for the caches, local

memories, and the packetizer modules. It is also responsible

for the communication between the modules. The real cores

mesh forwards a starting address for each processing core

in the system, which are provided by the generated Verilog

file from Heracles Designer. It uses this starting address to
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communicate with the caches and executes the program that

is loaded into the local memory.

When a core wants to write data to another cores memory

in the system, the address is sent to where the data is supposed

to be written in the memory. Once the memory has received

the address it checks whether it belongs to the cores local

memory or not. If the address is not inside the address space

of the local memory then it forwards the address and the data

onto the packetizer. In the packetizer the data is split and

put into data packets and then sent to the network interface

which in turn sends the data packets over to the router. The

router checks the address, identifies to which processing core it

belongs and once the address is verified it establishes a point to

point connection. The router then sends the data packets over

to the NoC. When a core wants to read data from another cores

memory, it first sends the address to where it want to access

the data along with a read request to its memory. The memory

then checks if the address received from the core is inside its

own address space. If the address is not inside the memory

address space it forwards the address over to the packetizer.

The packetizer forwards the address to the network interface

which in turn forwards the address to the router and the NoC.

The router checks the address, identifies to which processing

core it belongs and once the address is verified it establishes

a point to point connection. The router then forwards the read

request to the core where data is to be accessed. The core

which receives the read request, sends the data over to the

core that generated the read request.

C. Interface Module

The interface module (see Figure 3) works as a bridge

between the Heracles System and the OpenRISC processor.

This module was created to keep the original modular design

structure of the Heracles System. The OpenRISC CPU com-

municates with the memory sub system & router (see Figure 1)

using the address translation logic for the instruction and data

addresses. The address translation in the HHS concatenates the

processing core number, generated by the Heracles System,

with the address generated by the OpenRISC CPU. The new

address is forwarded to the memory router system which

utilizes the address to find the instruction or data at that

particular address.

V. RESULTS

The Heterogeneous Heracles System (HHS) is synthesized

and realized on to a Virtex 6 FPGA. Furthermore, a set

benchmark applications are tested to obtain the systems per-

formance.

A. Synthesizing to FPGA

The device utilization is presented individually for the MIPS

and OpenRISC processing cores in Table I. The synthesis of

the processing cores were mapped on the Virtex 6 (xc6vlx75t-

1ff484) FPGA. In order to compare the OpenRISC and MIPS

processors, detailed knowledge about their inner structure is

necessary. One of the most important difference is that the

Fig. 3. Interface Module.

TABLE I
DEVICE UTILIZATION OF THE MIPS AND OPENRISC CORES.

FPGA Resources MIPS OpenRISC

Number of Slice Register 4151(2%) 4555(3%)
Number of Slice LUTs 7553(10%) 8467(12%)
Number of fully used LUT-FF pairs 3249(7%) 3268(8%)
Number of Block RAM/FIFO 8(5%) 12(7%)
Number of BUFG /BUFGCTRLs 5(15%) 5(15%)

MIPS processing core only supports arithmetic and logical

operations, excluding multiplication and division. OpenRISC

supports arithmetic and logical operations as well as multi-

plication and division. Furthermore the OpenRISC supports

floating-point operations. Taking that into account, having a

more powerful processor as OpenRISC allows the Heracles

System to run complex algorithms more efficiently. When

comparing the Number of Slice Registers, LookUp Tables

(LUTs), Global Control Buffers (BUFG/BUFGCTRLs) we can

see that the OpenRISC processor utilizes a bit more resources

than the MIPS.

It is quite surprising that even though the OpenRISC core

is much more powerful compared to the MIPS core it utilizes

almost the same amount of FPGA resources. The reason for

this needs to be explored further but we suspect it to be

the level of optimization that has gone into the OpenRISC

implementation compared to the MIPS implementation.

The tests performed on the HHS were simulated to ascertain

the system performance with various common benchmarks.

Three different architectures were synthesized, the first one

containing four MIPS cores, the second one containing four

OpenRISC cores and the third one containing two MIPS and

two OpenRISC CPUs. Table II shows the device utilization

and clock frequencies of the synthesized architectures. The

synthesis could not be performed with a larger architectural

implementation due to the FPGA size limitations. The Hera-

cles System uses a lot of buffers and flip-flops to set up the

network topology and the core-to-core communication in a

modular way. This results into a heavy utilization of Slice Reg-
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TABLE II
DEVICE UTILIZATION FOR DIFFERENT ARCHITECTURAL DESIGNS.

FPGA Resources 4 MIPS
cores

4 OpenRISC
cores

2 MIPS +
2 OpenRISC
cores

Number of Slice Reg-
ister

19806(10%) 21509(12%) 20729(11%)

Number of Slice
LUTs

38131(41%) 42532(50%) 40003(44%)

Number of fully used
LUT-FF pairs

15431(42%) 15269(32%) 15214(37%)

Number of Block
RAM /FIFO

29(28%) 45(28%) 45(28%)

Number of BUFG
/BUF- GCTRLs

16(50%) 16(50%) 16(50%)

Clock Frequency 103MHz 103MHz 103MHz

isters, LUTs, LUT-FF pairs and BUFG/BUFGCTRLs. Thus,

it was not possible to have more than four cores realized on

the Virtex 6 FPGA. Based on the clock report obtained during

synthesis (cf. Table II) the clock cycle for the synthesized

cores is 9.7 ns.

B. Applications Testing

We have used two common benchmarks to simulate the

execution on a 64-core architecture generated by the HHS.

The system generated for these tests, has a uniform distributed

memory of 64KB and 64 OpenRISC cores, where each core

has 64 bytes of instruction cache and 64 bytes of data cache.

The network topology used is a 2D Mesh with XY-routing.

Each core was loaded with the machine instructions of the

benchmark programs.

The first test is a matrix-matrix multiplication using 8x8

matrices and 16x16 matrices. In both of the cases, integer

values were used as matrix elements. In the 8x8 matrix

multiplication the input matrix data is divided among 64

processing cores and each core computes one element of the

resulting matrix. This was executed in 441 clock cycles and

the achieved throughput is 14.9 million samples per second

obtained at a clock frequency of 103 MHz. The 16x16 matrix

multiplication was done with the same procedure and each

processing core computed 4 elements of the resulting matrix.

This was executed in 1278 clock cycles (see Table III). Based

on the clock frequency at which the architecture is synthesized

on a FPGA (see Table II), an estimation is made as to how

much actual time the test program requires to execute on a

FPGA. Thus the resulting execution time for 16x16 matrix

multiplication when realized on the FPGA is 12.39μs.

The second test is a Fast Fourier Transform (FFT) calcu-
lation. The 16-point FFT is computed in a similar way as the

matrix multiplication. The total run-time for the FFT is 693

cycles, resulting in a throughput of 2.4 million samples per

second. The total cycles and the total simulation time can

be seen in Table III. The estimated execution time on the

FPGA for the FFT is 6.72μs. Comparing this to the simulation

TABLE III
SYSTEM PERFORMANCE.

Total
Execution
Cycles

Throughput
(Million
Samples/sec)

Total Simula-
tion Time (sec)

8x8 Mat. Mult. 441 14.9 205.2

16x16 Mat.
Mult.

1278 20.6 558

16-point FFT 693 2.4 265.8

time, in Modelsim, of 4.43 minutes (266 sec) we see that the

execution on the FPGA can be expected to run 40000 times

faster.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have presented Heterogeneous Heracles

System (HHS), a design space exploration tool for hetero-

geneous manycore architectures. This tool is an extension to

the open-source design space exploration tool Heracles, to

which we have added the functionality to add new types of

processors, and as an example incorporated the OpenRISC

processor. We have also added a graphical user interface

to determine the parameterization of the architectures. This

new tool allows the designer to quickly model and explore

heterogeneous manycore architectures based on two different

types of processor cores: MIPS and OpenRISC. The output

from HHS is a set of Verilog files that can be simulated directly

or synthesized in FPGAs.

To test our tool we have generated a first set of architectural

designs which we synthesized and mapped on a Virtex 6 FPGA

using HHS. These designs have then been tested and evaluated

through two common benchmark programs: a matrix-matrix

multiplication and a Fast Fourier Transform. From these

simulation and synthesis experiments we see a clear benefit in

being able to synthesize heterogeneous manycore architectures

using parameterization, as the benchmark programs can run

about 40000 times faster, when synthesized on FPGAs rather

than a Verilog simulation of the architecture.

Even though the OpenRISC core is much more powerful

than the MIPS core, and includes support for floating-point

operations (which MIPS lacks), our findings show that Open-

RISC is utilizing almost the same amount of FPGA resources

as the studied MIPS implementation. Future investigations into

Heracles and other possible MIPS implementations might shed

more light onto the underlying reasons for this. One hypothesis

is the different levels of optimization applied to OpenRISC

as compared Heracles’ MIPS implementation used during our

study.

In the future, we plan to perform more complex bench-

marking on the generated architectural designs and include

additional types of processor cores into HHS in order to ex-

pand the design exploration space for heterogeneous manycore

architectures.
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